Do Hydraulic Conductivity Values in Varying Geologic Settings Depend on Selection of Slug Testing Field Methods and Data Evaluation Techniques?

Developed and presented by:

Amy Martinez, R.S. Project Hydrogeologist

- Local Environmental Consultants
- Specializing in Water and Wastewater
- Staff Comprised of Former Regulators w/ Professional Licensure & Credentials
- **♦ We are Celebrating Our 10th Anniversary!**

Hydraulic Conductivity (K)

Figure 2-9. Difference between hydraulic conductivity and transmissivity

Capacity to
Transmit
Water

Remember Darcy? Q=KIA

Length Units (ft/day)

Uses of Hydraulic Conductivity (K)

- Contaminant Fate and Transport Models
- Hydrologic Balance Evaluations
- Groundwater Mounding Estimates

Data Sources for K

Slug Tests

Pumping Tests (Derivable from Transmissivity)

Literature

Hypothesis (and Concern)

- In theory, K is an Innate Hydrogeologic Property of the Aquifer
- We Scientists Hope/Expect K to be Insensitive to Variances in Measurement Technique (Field and Office)
- K Variability Should Reflect the Aquifer; It Should Not be A Function of What We Do and How

What is a Slug Test?

- **Bail In/Out**
- Rising Head
- **Falling Head**

Slug Test Design Considerations

- Borehole Radius
- Geologic Log
- Water Level
- Stratigraphy
- Saprolite/Rock

Well Construction is Important

- $\mathbf{Q} = \mathbf{KiA}$
- Casing Radius
- Screen Length
 /Interval
- Gravel Interval
- Gravel Porosity
 - 1 (bulk density/quartz density) * 100

Well Development – This is Key!

Field Methods for Slug Testing

QA/QC Measures Enhance Defensibility

- Data Loggers
- One Second Readings
- Equilibrate
- Recovery
- Multiple Tests

Unconfined Aquifers

Butler, James J. 1998. The Design, Performance, and Analysis of Slug Tests. CRC Press LLC: Boca Raton, FL.

Standard Data Analysis Options

Bouwer and Rice (1976) Method

Bouwer (1989) Update

Starpoint Software, Inc. 1994 – 2006
 Super Slug Version 3.2.0.0

Time vs. Head Ratio (Recovery)

Gravel Pack Correction

Bouwer and Rice Graph

Trend Fit Challenges

K Dependent on Head Ratio?

K Values (Coastal Plain)		
Interpreted Head Ratio	Resultant K	
Head Ratio 0.2-0.05	5.0	
Head Ratio 0.4-0.2	22	

No Gravel Pack Correction

Same Data: Gravel Pack Correction

2nd Example: No Gravel Pack Corr.

2nd Example: Gravel Pack Corr.

Using GPC Doubles Resultant K

K Values (Union Bridge Well)

Head Ratio	Gravel Pack Correction Used?	Resultant K
0.3-0.2	No	2.7
0.3-0.2	Yes	5.0
0.5-0.3	No	13
0.5-0.3	Yes	26

No GPC – Low Yield Well

No GPC – High Yield Well

What is the K for the "Site"?

Well Setting Graphical Solution

0.05

On Fracture 5.5

Off Fracture

K is Aquifer Dependent But Also...

- **K Depends Sharply on Field & Data Eval. Methods**
- Not Using GCF Can Lead to K Values "Too Low"
- Assuming Low K (Always) is Better? May be Myopic!
- ◆ Fate and Transport: Low K May Yield False Sense of Security (Contaminant is Not Coming Too Fast)
- Accuracy Should be the Goal, Not Lowest K Possible –
 This Maximizes Return on Study Investment

Recommendations Going Forward

- Test Repeatedly: Multiple Iterations / Wells
- Choose Methods with Care (Read the Papers)
- Clearly State Assumptions and Limitations

References

- **Bouwer, Herman. 1989. The Bouwer and Rice Slug Test An Update. Groundwater 27 (3).**
- Bouwer, H. and Rice, R.C. 1976. A Slug Test for Determining Hydraulic Conductivity of Unconfined Aquifers with Completely or Partially Penetrating Wells. Water Resources Research 12 (3).
- Butler, J.J. Jr. 1998. The Design, Performance, and Analysis of Slug Tests. Lewis Publishers: Washington D.C. 252 p.
- Butler, J.J. Jr. 1996. Slug Tests in Site Characterization: Some Practical Considerations. Environmental Geoscience Volume 3(3) 154 p.

